
Preface

Building a computer operating system is like weaving a fine tapestry. In each
case, the ultimate goal is a large, complex artifact with a unified and pleasing design,
and in each case, the artifact is constructed with small, intricate steps. As in a tapestry,
small details are essential because a minor mismatch is easily noticed — like stitches in
a tapestry, each small piece added to an operating system must fit the overall design.
Therefore, the mechanics of assembling pieces forms only a minor part of the overall
process; a masterful creation must start with a pattern, and all artisans who work on the
system must follow the pattern.

Ironically, few operating system textbooks or courses explain underlying patterns
and principles that form the basis for operating system construction. Students form the
impression that an operating system is a black box, and textbooks reinforce the
misimpression by explaining operating system features and focusing on how to use
operating system facilities. More important, because they only learn how an operating
system appears from the outside, students are left with the feeling that an operating sys-
tem consists of a set of interface functions that are connected by a morass of mysterious
code containing many machine-dependent tricks.

Surprisingly, students often graduate with the impression that research on operating
systems is over: existing operating systems, constructed by commercial companies and
the open source community, suffice for all needs. Nothing could be further from the
truth. Ironically, even though fewer companies are now producing conventional operat-
ing systems for personal computers, the demand for operating system expertise is rising
and companies are hiring students to work on operating systems. The demand arises
from inexpensive microprocessors embedded in devices such as smart phones, video
games, wireless sensors, cable and set-top boxes, and printers.

When working in the embedded world, knowledge of principles and structures is
essential because a programmer may be asked to build new mechanisms inside an
operating system or to modify an operating system for new hardware. Furthermore,
writing applications for embedded devices requires an appreciation for the underlying
operating system — it is impossible to exploit the power of small embedded processors
without understanding the subtleties of operating system design.

This book removes the mystery from operating system design, and consolidates the
body of material into a systematic discipline. It reviews the major system components,
and imposes a hierarchical design paradigm that organizes the components in an order-
ly, understandable manner. Unlike texts that survey the field by presenting as many al-
ternatives as possible, the reader is guided through the construction of a conventional
process-based operating system, using practical, straightforward primitives. The text
begins with a bare machine, and proceeds step-by-step through the design and imple-

xx Operating System Design

mentation of a small, elegant system. The system, called Xinu, serves as an example
and a pattern for system design.

Although it is small enough to fit into the text, Xinu includes all the components
that constitute an ordinary operating system: memory management, process manage-
ment, process coordination and synchronization, interprocess communication, real-time
clock management, device-independent I/O, device drivers, network protocols, and a file
system. The components are carefully organized into a multi-level hierarchy, making
the interconnections among them clear and the design process easy to follow. Despite
its size, Xinu retains much of the power of larger systems. Xinu is not a toy — it has
been used in many commercial products by companies such as Mitsubishi, Lexmark,
HP, IBM, and Woodward (woodward.com), Barnard Software, and Mantissa Corpora-
tion. An important lesson to be learned is that good system design can be as important
on small embedded systems as on large systems and that much of the power arises from
choosing good abstractions.

The book covers topics in the order a designer follows when building a system.
Each chapter describes a component in the design hierarchy, and presents example
software that illustrates the functions provided by that level of the hierarchy. The ap-
proach has several advantages. First, each chapter explains a successively larger subset
of the operating system than the previous chapters, making it possible to think about the
design and implementation of a given level independent of the implementation of
succeeding levels. Second, the details of a given chapter can be skipped on first reading
— a reader only needs to understand the services that the level provides, not how those
services are implemented. Third, reading the text sequentially allows a reader to under-
stand a given function before the function is used to build others. Fourth, intellectually
deep subjects like support for concurrency arise early, before higher-level services have
been introduced. Readers will see that the most essential functionality only occupies a
few lines of code, which allows us to defer the bulk of the code (networking and file
systems) until later when the reader is better prepared to understand details and refer-
ences to basic functions.

Unlike many other books on operating systems, this text does not attempt to re-
view every alternative for each system component, nor does it survey existing commer-
cial systems. Instead, it shows the implementation details of one set of primitives, usu-
ally the most popular set. For example, the chapter on process coordination explains
semaphores (the most widely accepted process coordination primitives), relegating a
discussion of other primitives (e.g., monitors) to the exercises. Our goal is to remove
all the mystery about how primitives can be implemented on conventional hardware.
Once the essential magic of a particular set of primitives is understood, the implementa-
tion of alternative versions will be easy to master.

The Xinu code presented in the text runs on many hardware platforms. We will
focus on two low-cost experimenter boards that use two popular processor architectures:
a Galileo board that contains an Intel (x86) processor and a BeagleBone Black that con-
tains an ARM processor. The paradigm is that a programmer uses conventional tools
(editor, compiler, and linker) to create a Xinu image. The image is then loaded onto a
target board, and the board boots the Xinu operating system.

Preface xxi

The book is designed for advanced undergraduate or graduate-level courses, and
for computing professionals who want to understand operating systems. Although there
is nothing inherently difficult about any topic, covering most of the material in one
semester demands an extremely rapid pace usually unattainable by undergraduates. Few
undergraduates are adept at reading code, and fewer still understand the details of a run-
time environment or machine architecture. Thus, they need to be guided through the
chapters on process management and process synchronization carefully. Choosing
items to omit depends largely on the background of students who take the course. If
time is limited, I recommend covering Chapters 1–7 (process management), 9 (basic
memory management), 12 (interrupt processing), 13 (clock management), 14 (device-
independent I/O), and 19 (file systems). If students have taken a data structures course
that covers memory management and list manipulation, Chapters 4 and 9 can be
skipped. It is important for students to understand that most operating systems include
network communication. If they will take a separate course in networking, however,
they can skip Chapter 17 on network protocols. The text includes chapters on both a re-
mote disk system (18) and a remote file system (20); one of the two can be skipped.
The chapter on a remote disk system may be slightly more pertinent because it intro-
duces the topic of disk block caching, which is central in many operating systems.

In grad courses, class time can be spent discussing motivations, principles, trade-
offs, alternative sets of primitives, and alternative implementations. Students should
emerge with a firm understanding of the process model and the relationship between in-
terrupts and processes as well as the ability to understand, create, and modify system
components. They should have a complete mental model of the entire system, and
know how all the pieces interact. Two topics should be included in both graduate and
undergraduate courses: the important metamorphosis that occurs during startup when a
sequential program is transformed into a process, and the transformation in the shell
when a sequence of characters on an input line become string arguments passed to a
command process.

In all cases, learning improves dramatically if students have hands-on experience
with the system. The low cost of the boards we have selected (they are available for
less than $50 US) means each student can afford to purchase a board and the cables
needed to connect it to a laptop or other development computer. Ideally, they can start
to use the system in the first few days or weeks of the class before they try to under-
stand the internal structure. Chapter 1 provides a few examples and encourages experi-
mentation. (It is surprising how many students take operating system courses without
ever writing a concurrent program or using system facilities.) Many of the exercises
suggest improvements, experiments, and alternative implementations. Larger projects
are also possible. Examples that have been used with various hardware include: a pag-
ing system, mechanisms to synchronize execution across computers, and the design of a
virtual network. Other students have transported Xinu to various processors or built de-
vice drivers for various I/O devices. Of course, a background in programming is as-
sumed — working on the code requires a knowledge of the C programming language
and a basic understanding of data structures, including linked lists, stacks, and queues.

xxii Operating System Design

At Purdue, we have a lab with an automated system providing access to the experi-
menter boards. A student uses cross-development tools on a conventional Linux system
to create a Xinu image. The student then runs an application that uses the lab network
to allocate one of the boards, load the image onto the board, connect the console line
from the board to a window on the student’s screen, and boot the image. Because the
hardware is inexpensive, a lab can be constructed at very low cost. For details, contact
the author or look on the website:

www.xinu.cs.purdue.edu

I owe much to my experiences, good and bad, with commercially available operat-
ing systems. Although Xinu differs internally from existing systems, the fundamental
ideas are not new. Many basic ideas and names have been taken from Unix. However,
readers should be aware that many of the function arguments and the internal structure
of the two systems differ dramatically — applications written for one system will not
run on the other without modification. Xinu is not Unix.

I gratefully acknowledge the help of many people who contributed ideas, hard
work, and enthusiasm to the Xinu project. Over the years, many graduate students at
Purdue have worked on the system, ported it, and written device drivers. The version in
this book represents a complete rewrite, and many students at Purdue contributed. As
we updated the code, we strove to preserve the elegance of the original design. Rajas
Karandikar and Jim Lembke created drivers and the multi-step downloading system
used on the Galileo. Students in my operating systems class, including Andres Bravo,
Gregory Essertel, Michael Phay, Sang Rhee, and Checed Rodgers, found problems and
contributed to the code. Special thanks go to my wife and partner, Christine, whose
careful editing and suggestions made many improvements throughout.

Douglas Comer

